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MAJOR NEEDS

e Petroleum Refining

+ H; — 1500 °F NBP
+ mostly hydrocarbons with 1-2 wt% S: 0.1 - 0.2 wt% N: < 0.1 wt% 0
+ major need: heavy hydrocarbons, NBP > 800 °F (700 K)

o Petrochemicals

+ nonpolar (e.g., olefins)

+ polar (e.g., water, alcohols, polyalcohols, ether alcohols)
+ major need:

- complex polyfunctional polars
- polymers

e Characterization... Properties... Modes of data generation



CHARACTERIZATION IS THE SELECTION OF MEASURABLE
PROPERTIES USED TO PREDICT ALL OTHER PROPERTIES
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CURRENT METHODS OF PROPERTY PREDICTION

* Pseudocomponet Breakdown by NBP (Lab Still)
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» NBP, SG Characterize Narrow Fractions

* Wide Boiling Range Cuts Treated as Mixtures

 Property = function (NBP, SG)

» Problems for Residua, Highly Aromatic Synfuel or Converted Fractions



THERMAL CONDUCTIVITY OF TWO SIMILAR
PETROLEUM FRACTIONS

NBP,°F  °API  Kw

L 805 221 11.75
L] 817 22.4 11.80
ﬂ.ﬂﬂﬂﬂ b Y !. -l T I -~ "
-
m
4
T 0.0750p ;
=
||_-
aa]
>
=
=
5 0.0700F
=
|
=
-
3
|
i
=
L 0.0650 = -
=
0.0600 =
0.0560 i | it L o
0 100 200 300 400 500

TEMPERATURE, °F



PETROLEUM HYDROCARBON CHARACTERIZATION--WHERE IS IT GOING?

« Current framework limited to NBP (MW?) and SG
+ more info readily available via new analytics (e.g., GC-MS)

 Typically front-end components identified through Cs
+ Cs' characterized by NBP/SG via distillation up to 1050 °F

« Analytics extending front-end to C+¢ and beyond -- many isomers!
+ Need experimental data, reliable predictions -- for component properties
first, then mixtures
+ May be a practical limit in number of components



CARBON-NUMBER RANGE OF HYDROCARBONS IN PETROLEUM CRUDE
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PETROLEUM HYDROCARBON CHARACTERIZATION--WHERE IS IT GOING?

e Current framework limited to NBP (MW?) and SG
+ more info readily available via new analytics (e.g., GC-MS)

« Typically front-end components identified through Cs
+ Cs' characterized by NBP/SG via distillation up to 1050 °F

 Analytics extending front-end to C4o and beyond -- many isomers!
+ Need experimental data, reliable predictions -- for component properties

first, then mixtures
+ May be a practical limit in number of components

« New techniques extending back-end NBP'’s to 1300 °F (endpoint > 1500 °F)

+ Molecular complexity suggests that
- full component characterization not feasible

- but need more than NBP/SG to describe heavy hydrocarbons



A VARIABLE END POINT IN PLACE OF 1500 °F

¢ Even a light crude (< 10 wt% has NBP > 1050 °F) can have an EP > 1500 °F
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PETROLEUM HYDROCARBON CHARACTERIZATION--WHERE IS IT GOING?

e Current framework limited to NBP (MW?) and SG
+ more info readily available via new analytics (e.g., GC-MS)

e Typically front-end components identified through Cs
+ Cs" characterized by NBP/SG via distillation up to 1050 °F

» Analytics extending front-end to C4, and beyond -- many isomers!
+ Need experimental data, reliable predictions -- for component properties
first, then mixtures
+ May be a practical limit in number of components

* New techniques extending back-end NBP’s to 1300 °F (endpoint = 1500 °F)
+ Molecular complexity suggests that
- full component characterization not feasible
- but need more than NBP/SG to describe heavy hydrocarbons
= + Data needed for heavy model components to define characterization
basis
- APl 42 provides a good starting point



ANALYSIS OF API 42 DATA

Volatility, melting point, and viscosity index
+ Key properties of lubricants
+ Vlis inversely related to Temp. Dep. of kinematic viscosity

Volatility is strongly related to molecular size
+ Easiest property to correlate

Melting point and VI are strongly related to molecular structure
+ Dependence on structure differs for two properties

+ MP depends on ability of molecule to fit into 3-D network

+ Vlis primarily affected by molecular flexibililty

What structural parameters can quantify
+ Ability of a molecule to fit into a 3-D network?
+ Molecular flexibility?



CHARACTERIZATION OF POLARS

e Models still based on 3-parameter CS concepts with extensions

e Proposed extensions include
+ Alternative and/or multiple reference fluids
+ 4th CS parameter--dipole moment, polarizability

p=p+a-fp)
+ Self-association contributions

* Not much progress made for typical engineering applications
+ One exception is area of group-contribution-based models
= Mostly success for pure component properties (e.g., ideal gas
properties, liquid density)
= Limited success for mixtures (e.g., activity coeff. via UNIFAC)
= Limited/no use for heavy HC's in current charact. framework



EXAMPLE: PENTAERYTHRITOL

CIIHEOH

HOH,C IC CH;OH

CH;0OH
« Can pure-component properties be predicted?

+ Benson's method probably adequate for ideal-gas properties
+ Correlations for most other properties too unreliable

e Can VLE/LLE/H® properties be predicted?

+ UNIFAC (or ASOG) not reliable for polyfunctional polar compounds
+ Limitations due to lack of experimental data and understanding of
intramolecular effects

« Computational chemistry may lead to rigorous group-contribution models that
account for intramolecular effects



~CHARACTERIZATION OF POLYMERS

« Different approach dictated by available data--and properties needed

+ MW and liquid density may be available
+ NBP or critical properties do not exist

o Characterization parameters typically are property - and model - specific

+ E.g., P-V-Tdata= P, V', T in 3-parameter CS (Prigogine, Flory)
+ CS parameters are not “universal”

e Polar contributions may be included via model parameters

+ Self- and cross-association terms in SAFT EQCS



CAN POLYMER THEORY PROVIDE GUIDANCE
IN HEAVY HC CHARACT.?

« Polymers are structurally well-defined but high MW (up to 10%)

+ Typical properties are MW, liquid density, melting point (?)
+ Cannot link to defined compounds (via T.) or petroleum hydrocarbons (via NBP)

« Petroleum heavy ends are structurally complex (ill-defined) and lower MW (up to 109
+ Presence of heteroatoms/functional groups adds to complexity

Complexity

A
Heavy
‘." Petroleum .iIL
Hydrocarbons
g Sl -
Ar Cs Caq Cioo Polyethylene

» At present, only limited connections can be made
+ e.9., extension of normal alkanes to polyethylene as CN gets large

+ Other opportunities?



THERMOPHYSICAL FOR DESIGN

e First and most important use of thermophysical properties is in heat and
material balance calculations

- Uncertainties in data/predictions directly affect results

- Three essential properties:
+ Vapor-Liquid Equilibria
+ Enthalpy
+ Density (P-V-T)

e Emphasis on VLE (include vapor pressure) due to importance of distillation in
separations

- |f separation by extraction, LLE become important

« Enthalpy includes heat capacity, heat of vaporization, heat of mixing, AND
heat of reaction



~YAPOR PRESSURE PREDICTIONS |

o Key property in VLE calculations

» Corresponding - states models most common

+ Require critical properties, acentric factor (or Riedel alpha)
+ For fractions (NBP/SG), Maxwell-Bonnell (M-B) is “standard”
- Predict VP directly
- Alternatively, use M-B to initialize C-S model

o Maxwell-Bonnell VP for petroleum fractions

+ one VP (NBP or some other P<1 atm) and average SG

+ Frequently extrapolated to high-boiling (1050 °F+) components
- Limited VP data available to Ca3

+ Large errors for polar fractions (e.g., phenalics in coal liquids)



WHAT ABOUT VP OF POLARS?

e C-S models proposed
+ 4-parameter
+ Alternative reference fluids

e Can VP of polars be superimposed on M-B for fractions?
+ Correlate delta with,e.qg., polarizability and/or dipole moment
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VLE METHODS

EQUATIONS OF STATE HYBRID METHODS
YVAPOR: EOS
LIQUID: G=
LRI ¥ REQUIREDATA PREDICTIVE
SRk i WILSON ASOG
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VLE (VLLE) PREDICTIONS FOR HYDROCARBON SYSTEMS

e Equations of state - cubic

+ Can go far with vdW mixing rule, one binary parameter
- H2/HC; water in HC

+ However, significant limitations exist
- HC in water; NBP's > 1050 °F (vdW mixing breakdown?)
- Polars restricted to low-concentrations

» Equations of state - higher order

+ Previous generation: BWR (limited to light ends)
+ Current generation: PHCT, PACT, SAFT (light ends to polymers)
- Include association contributions -- still not quantitative for HC/water
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VLE (VLLE) PREDICTIONS FOR HYDROCARBON SYSTEMS

e Equations of state - cubic

+ Can go far with vdW mixing rule, one binary parameter
- Ho/HC; water in HC

+ However, significant limitations exist
- HC in water; NBP's > 1050 °F (vdW mixing breakdown?)
- Polars restricted to low-concentrations

e Equations of state - higher order

+ Previous generation: BWR (limited to light ends)
+ Current generation: PHCT, PACT, SAFT (light ends to polymers)
- Include association contributions -- still not quantitative for HC/water
» - SAFT extensively applied to polymer phase equilibria
- Potentially better for heavy hydrocarbons (NBP > 1050 °F)
+ Arguably, area of greatest recent advances -- but still in infancy



VLE (VLLE) PREDICTIONS FOR HYDROCARBON SYSTEMS (Cont)

o Hybrid Methods -- EoS (Vapor) + G** (Liquid)

+ Handle polars at low pressure (away from critical region)
- Data required for G*™ parameters
- Group-contribution methods (ASOG, UNIFAC) for prediction
+ Some methods (G*) applicable to polymer solutions
+ Limitations for polyfunctional polars -- GC does not work
- Opportunity for computational chemistry to build better models

« Equations of State with G* - Based Mixing Rules

Cubic EoS + G*™ model (e.g., NRTL, UNIFAC)

Data needed for parameters (e.g., H-V, W-S) or predictive (e.g., PSRK)
For predictive models, new groups required for light gases

Cannot be used for polymers - EoS require criticals, VP

+ + + +



ENTHALPY AND DENSITY PREDICTIONS _

Next to VLE, most important properties in H&MB calcs

Corresponding-states models most common
+ Again, based on criticals, acentric factor
+ NBP/SG correlations still available for petroleum (e.g., API TDB)

Lee-Kesler (1975) generally used for -
+ PVT and H (vapor phase), H (liquid); COSTALD for PVT (liquid)
+ Heavy components (CN >> 10)
+ Polars also (low concentrations ?)

L-K has significant limitations
+ Poor density, Cp at low Tr
+ (6V/6P)y is positive for CN > 15
- General problem for properties not linear in acentric factor
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ENTHALPY AND DENSITY PREDICTIONDS _

Next to VLE, most important properties in H&MB calcs

Corresponding-states models most common
+ Again, based on criticals, acentric factor
+ NBP/SG correlations still available for petroleum (e.g., APl TDB)

Lee-Kesler (1975) generally used for
+ PVT and H (vapor phase), H (liquid); COSTALD for PVT (liquid)
+ Heavy components (CN >> 10)
+ Polars also (low concentrations ?)

L-K has significant limitations
+ Poor density, Cp at low Tg
+ (dVIdP)t is positive for CN = 15
- General problem for properties not linear in acentric factor

Potential Enhancements?
+ ImJ:Jrnved ref. fluid EOS (must extrapolate below MP!)
+ 2" order effects (non-linear acentric factor dependence)
+ Others?



THERMOPHYSICAL PROPERTY NEEDS FOR EQUIPMENT DESIGN

» Transport Properties (Especially Viscosity and Thermal Conductivity) and
Surface Tension are Primarily Used in Design of Equipment

» Highly Accurate Data Might Not be Needed

- Property May Have Little Influence on Equipment Size
+ Value may not vary much
+ Property is frequently raised to a fractional power

- Model Based on Low-Quality Data May Not Benefit From High-Quality

Data
+ Model for equipment design should be revised with high-Q data

- Fouling of Equipment Diminishes Effect of Properties
+ Allowance must be made for fouling (which cannot be quantified)



SURFACE TENSION OF PURE COMPOQUNDS

e Two Types of Models
- Corresponding-States

c=0,(1-T;)P

O . bare adjustable parameters
+ Oy=0 at 0OK; Gg = f(K,) for petroleum fractions
+ b= 11/9 for hydrocarbons; a function of temperature for polars

-  Parachor Method

o= {L:TI] [.ﬂL - ijr

where [P] = parachor of compound
+ a constant for hydrocarbons
+ a function of temperature for polars



SURFACE TENSION OF MIXTURES

e For mixtures of hydrocarbons: Weinaug-Katz equation

4
?‘iiPL s }'iﬂv

ML MV

[P];

oOm= E
1
- VLE Flash Calculation Must Be Performed First to Obtain Equilibrium
y and x
e For polar mixtures: Weinaug-Katz equation doesn’t work
- No general method for polar mixtures

« Rigorous treatment (e.g., Sprow and Prausnitz, 1966) requires bulk and
surface activity coefficients, component surface areas



TRANSPORT PROPERTY PREDICTIONS (VISCOSITY)

e Available models relatively “primitive” — benign neglect?
+ Pure component properties with blending (liquid only)



KINEMATIC VISCOSITY OF PETROLEUM FRACTIONS

+ Modified Walther equation is refining industry standard

log;logq(v+¢)= a+blog,,T

c =0.7forv=2cSt; f(v) forv<2cSt
T is absolute temperature

» Measurement (or prediction) of KV at two temperatures is minimum required
information

+ Various correlations for KV at 100, 210 °F: Abbott (1971), Twu (1985), etc.
+ For vacuum residua (NBP > 1050 °F [840 K]), best to measure KV at least
at three temperatures
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TRANSPORT PROPERTY PREDICTIONS (VISCOSITY)

¢ Available models relatively “primitive” -- benign neglect?
+ Pure component properties with blending (liquid only)
» + Reduced density C-S (Vapor only)
+ Other C-S models (L-K - like) not successful

e TRAPP model (1981) most widely used in refining and petrochemical industry
+ Handles both liquid and vapor phases, mixtures of lights and “heavies”
+ Extended to include petrochem fluids (Baltatu et al., 1982, 1996)
+ Large errors for CN > 10. What about CN >> 107

e What about Polars?

+ Group-contribution methods for (simple) polars (e.g. Van Velzen)
+ Lacking generalized mixture models

e Polymers ??
+ No predictive models
+ Greater dependence on shear (which cannot be generalized)



TRANSPORT PROPERTY PREDICTIONS (THERMAL COND.)

» Generally, less important than viscosity

Available models very primitive
+ E.g., universal linear-temp model for petroleum (API TDB)
+ Other models similar to those for viscosity

e Again, TRAPP (1983) most widely used in refining / petrochemical industry
+ Large errors for CN > 10... Data sparse for non-alkanes

e Polars
+ Methods available for (simple) pure components
+ Mixture models invoke simple blending... cannot handle dissolved gases

 Polymers
+ Little known--and even less is used in industry



INTEREST IN DIFFUSION COEFFICIENTS?

+ Generally, the property that is least discussed in process design
+ 20% uncertainty is considered acceptable
+ More detailed process design of mass-transfer equipment may raise
importance :
*» Recent focus on FT process has also raised interest in diffusion coefficients
+ (Duz Hco) / (Do Hug) in paraffins is important process parameter; H; is
Henry's constant
» Density, viscosity, and diffusion coefficient: experiment vs. molecular
simulation
+ Experimentally, density is easiest and diff. coeff. is most difficult to
measure
+ In simulation, it's the other way around: diff. coeff. is easiest to model



INTO THE 21ST CENTURY - THEORY/MODELING/EXPERIMENT

e From refining/petrochemical industry perspective

THEORY | SIMULATION |

» Experiment provides necessary foundation (the “truth™!)

* Theory and simulation provide physically-based framework
- Without this, we would be left only with empirical correlations



MOLECULAR SIMULATION... COMPUTATIONAL CHEMISTRY

» Significant advances...commercially available tools
» Molecular Simulation
+ An important tool for the 21st century

- Perhaps not for things we can do well today (Example: C>/C7 P-T
envelope)?
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MOLECULAR SIMULATION... COMPUTATIONAL CHEMISTRY

« Significant advances...commercially available tools

¢ Molecular Simulation

+ An important tool for the 21st century
- Perhaps not for things we can do well today (Example: C./C; P-T
envelope)?
» - Very useful for “measuring” what we cannot do in the laboratory:
= H,O/MHC phase behavior inside pores
- Also useful for developing better models, EOS

e Computational (Quantum) Chemistry
+ Already used in reaction chemistry

+ May provide a rigorous basis for identifying functional groups in group
contribution methods (Sandler's group)



EXPERIMENTAL DATA WILL STILL BE NEEDED!

+ “Good data are forever!”

¢ Data neded on systems and conditions of interest



VERY LOW RESIDENCE TIME METHODS

o Nikitin et al. (1993): 10°to 10° s

+ Critical points of unstable substances with a pulse-heating method
(temperature of attainable superheat approaches T.)

+ Critical points of normal alkanes up to C,4,; polyethylene glycols
e Wilson (1997). 0.1 s from room to system T

+ Critical points and vapor pressures with new flow method

+ NBP up to ~Css; CP up to ~Cgg

+ Method can possibly be used for other properties; e.g., heat capacity
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EXPERIMENTAL DATA WILL STILL BE NEEDED!

e “Good data are forever!”

e Data neded on systems and conditions of interest

» + Even for well-known processes
- Tighter designs require data of ever higher quality
- Technical challenges can still be found in common processes



PHASE EQUILIBRIA ISSUES IN THE ETHYLENE PROCESS

e Superfractionation (o ~ 1.1)
+ High accuracy needed in relative volatility (o) to reduce uncertainty in
stages or reflux (o-1)
+ 5% uncertainty in stages or reflux requires <0.5% uncertainty in «

» Cold Box (Low-Temperature Flash Separators)
+ Temperatures down to 100 K, moderate pressures (30-40 bar)
+ Distribution of contaminants (e.g., acetylene, NHs, NO,)

¢ Cold Box Safety Concerns -- Explosive Solids!
+ Acetylene: VLE — SLE
+ NO, (+NH3): VLE — SLE + chemical reaction —+ N2O3, NHs NO3
+ Absolutely need experimental data!



EXPERIMENTAL DATA WILL STILL BE NEEDED!

¢ “Good data are forever!”

o Data neded on systems and conditions of interest

+ Even for well-known processes
- Tighter designs require data of ever higher quality
- Technical challenges can still be found in common processes

» + Predictions for complex polars and polymers not yet reliable for design,
process optimization

e But data may not be needed for

+ Ar (except for VLE in heavy hydrocarbons)
+ VLE of ethanol/water (at 25 °C)
+ Thermal conductivity of toluene



SEPARATION AND PURIFICATION
Critical Needs and Opportunities

(NRC, 1987)

+ Separations research, development, and design are often hampered by a lack
of reliable physicochemical data

+ NIST is a logical focal point for coordinating the collection, evaluation,
and dissemination of physicochemical data on separations

e Industrial support of separation research

+ Industrial R&D projects are highly application-specific and often have
proprietary elements

+ Industrial research efforts cannot be expected to shoulder a significant
portion of generic, more fundamental research

- Support of generic research should come from the government



